August 5, 1996

#### **MEMORANDUM**

TO:

Orville D. Green, Assistant Administrator

Permits and Enforcement

FROM:

Brian R. Monson, Chief A CONTROL Operating Permits Bureal

SUBJECT:

Issuance of Tier II Operating Permit (#017-00036) to

Ceda-Pine Veneer, Incorporated, Samuels, Idaho

#### PURPOSE

The purpose for this memorandum is to satisfy the requirements of IDAPA 16.01.01 Sections 400 through 406 (Rules for the Control of Air Pollution in Idaho) for issuing Operating Permits.

#### PROJECT DESCRIPTION

This project is for an Operating Permit for Ceda-Pine Veneer, Inc., Samuels, Idaho. Emission point sources existing at the facility are as follows: One (1) hog fuel boiler; one (1) standby diesel boiler; one (1) deck saw; one (1) ring debarker; two (2) rosser head debarkers; one (1) chop saw; two (2) chippers; one (1) screen; one (1) Falcon hog; two (2) steam chambers; one (1) steam dryer; one (1) knife hog; two (2) chipper bins; and an indoor sawmill, slicer, and veneer clip/grade. Fugitive emission sources found at the facility are as follows: solid material storage piles, and paved and unpaved roads.

## SUMMARY OF EVENTS

On April 7, 1995, the Division of Environmental Quality (DEQ) received the facility's Tier II Operating Permit application forms. On August 18, 1995, the application was determined administratively complete. On March 25, 1996, a proposed Tier II Operating Permit was issued for public comment. A public comment period was then held from April 10, 1996, to May 10, 1996.

On May 13, 1996, DEQ received comments about the content of the proposed Operating Permit. These comments were addressed by DEQ in the response package.

#### RECOMMENDATIONS

Based on the review of the Operating Permit application and on applicable state and federal regulations concerning the permitting of air pollution sources, the Bureau staff recommends that Ceda-Pine Veneer, Inc., in Samuels, Idaho, be issued a Tier II Operating Permit for the sources that exist at the facility. Staff also recommends that the facility be notified of the Tier II permit fee requirement in writing. This fee will be applicable upon issuance of the permit.

ODG\BRM\YHC:jrj...\cedapine\c-pinef.IMM

cc: G. Burr, NIRO Source File

COF

August 5, 1996

#### MEMORANDUM

TO:

Brian R. Monson, Chief Operating Permits Bureau Permits and Enforcement

FROM:

Yihong H. Chen, Air Quality Engineer /C

Operating Permits Bureau

Bill Rogers, Air Quality Engineer Construction Permits Bureau

THROUGH:

Susan J. Richards, Air Quality Permits Manager Operating Permits Bureau

SUBJECT:

Technical Analysis for Tier II Operating Permit (#017-00036)

Ceda-Pine Veneer, Inc., Samuels, Idaho (Part I - Non-Confidential)

#### PURPOSE

The purpose for this memorandum is to satisfy the requirements of IDAPA 16.01.01 Sections 400 through 406 (Rules for the Control of Air Pollution in Idaho) for issuing Operating Permits.

#### FACILITY DESCRIPTION

Ceda-Pine Veneer, Inc., is located in Samuels, Idaho. The facility produces softwood veneer and green dimensional lumber. Logs are stored and debarked on site. The removed bark is recycled as fuel for the boiler. An assortment of saws cut the logs into cants and dimension lumber. The cants are heated in the steam chambers and further processed into veneer. The veneer is dried and stored on site. The further processed into veneer. The veneer is dried and stored on site. The dimensional lumber is sold as a rough green product. By-products such as wood chips and sawdust are sold as products to outside vendors. Process steam is provided by a wood waste boiler and a standby diesel boiler.

Bark is hogged and conveyed to the fuel house. The trim ends from the sawmill are chipped and transferred to the chip surge bin. Sawdust from the chipping passes through the fines blower cyclone and is transferred to a sawdust pile. Chips generated in the veneer production process are transfer to a chip bin. Veneer trash is hogged and transferred to the fuel house. Sawdust generated from the veneer process goes through a globe saw cyclone and is transferred to the fuel house. Wood chips and sawdust are sold as products to outside vendors.

Emission sources at the facility include fuel burning equipment such as boilers; process and manufacturing operations such as the sawmill, steam chambers, veneer dryer, cyclones; storage tanks; material transport, handling, and storage; and fugitive road dust.

#### PROJECT DESCRIPTION

This project is for an Operating Permit (OP) for the following existing point and fugitive emission sources.

#### Emission Units:

Hog Fuel Boiler - with a maximum rated capacity of 20,000 lb steam per hour. Hogged wood waste (bark, sawdust, and veneer trim ends and trash) generated on-site is used as fuel. The bolier furnance contains two (2) underfeed stokers. The boiler was constructed in 1988. The facility was issued Permit to Construct (PTC) #0240-0036. Because construction of this emissions unit commenced prior to June 9, 1989, the effective NSPS date, this emissions unit is not subject to federal regulation in accordance with 40 CFR 60, Subpart Dc. The emissions from the Hog Fuel boiler are controlled by a Hurst Model HBC 600/300-MC multiclone.

#### Equipment Specifications:

Manufacturer:

Model:

Max. Rated Capacity:

Fuel:

Hurst H4-4040-300 20,000 lbs steam/hr Hogged wood waste

#### Stack Design Specifications:

Height:
Exit Diameter:
Exit Gas Flow Rate:
Exit Temperature:

(2) Standby Diesel Boiler - with a maximum rated capacity of 10,000 pound steam per hour. The boiler was constructed in August 1976. This emissions unit is not subject to federal regulation in accordance with 40 CFR 60, Subpart Dc because of its construction date.

#### Equipment Specifications:

Manufacturer: Model: Design Capacity: Fuel: York Shipley 300 H/P 10,000 lbs/hr #1 or #2 fuel oil

#### Stack Design Specifications:

Height: Exit Diameter: Exit Gas Flow Rate: Exit Temperature: 28 feet 1.5 feet 1,500 acfm 415 F

40 feet

2.1 feet 15,265 acfm 325°F

- (3) Pl Deck Saw
- (4) P2 Ring Debarker
- (5) P3 Chop Saw
- (6) P4 Rosser Head Debarker
- (7) P5 Chop Saw
- (8) P7 Chipper #1
- (9) P8 Chipper #2
- (10) P9 Screen Out
- (11) P10 Fines Blower Cyclone
- (12) Pll Falcon Hog
- (13) P12 & P13 Steam Chamber #1 & #2
- (14) P15 Steam Dryer
- (15) P17 Knife Hog
- (16) P18 Globe Saw Cyclone
- (17) ST1, ST7 Bins Bins for chips.
- (18) Sawmill, Slicer, and Clip/grade.

#### Fugitive Sources:

- (1) Storage Piles.
- (2) Paved and Unpaved Roads.

#### SUMMARY OF EVENTS

On April 7, 1995, DEQ received an application for a Tier II OP. On June 9, 1995, the application was determined incomplete. On July 17, 1995, information was received addressing the incompleteness determination. The application was determined administratively complete on August 18, 1995. On August 21, 1995, the revised Section 1 of the General Information portion of the Tier II Application was received.

On October 11, 1995, DEQ Air Quality Engineers, Bill Rogers and Yihong Chen met with the facility's Consultant, Gretchen Hoy, to discussed some problems associated with emission calculations, and the material balance for the process. The issues raised in the meeting were significant in regard to the issuance of a Tier II OP. The letter requested that the facility voluntarily grant DEQ a sixty (60) day extension to the mandated timeline. On October 26, 1995, DEQ received the sixty (60) day extension from

the facility. However, all of the requested information was not received by DEQ within the sixty (60) day timeline. On December 15, 1995, the facility granted DEQ another forty-five (45) day extension to provide the requested information to DEQ. DEQ accepted the new extension and requested that the information be submitted by January 3, 1996. On January 8, 1996, DEQ received the requested information. On January 25, 1996, the facility granted DEQ an additional fifteen (15) day extension to resolve the confidentiality issue. On January 26, 1996, DEQ accepted the extension and stated that the confidential issue is resolved within the time frame, the proposed Tier II permit will be issued on February 14, 1996. On January 26, 1996, DEQ sent a letter explaining Idaho code and Rules regarding confidentiality and requested the facility's response by February 5, 1996.

On March 25, 1996, a proposed Tier II OP was issued for public comment. A public comment period was then held from April 10, 1996, to May 10, 1996. On May 13, 1996, DEQ received comments about the content of the proposed OP. These comments were addressed by DEQ in the response package.

#### DISCUSSION

#### Emission Estimates

Emission estimates were provided by the facility and can be seen in the April 7, 1995, application and in the July 17, 1995, amended application submittal. DEQ has estimated the PM, PM-10, SO<sub>2</sub>, NO<sub>x</sub>, CO, and the VOC (Volatile Organic Compound) emissions based on facility's submittal except for fugitive road dust emissions and storage tanks emissions.

The emissions from Standby Diesel Boiler were calculated based on facility's submittal and AP-42 Section 1.3 (Fuel Oil Combustion, 1/95). The emission factors (EFs) used to estimate the emissions from manufacturing operations, and material handling were taken from AP-42 Section 10.3 (Plywood Veneer and layout Operations, 2/80), Section 10.4 (Woodworking Waste Collection Operations, 2/80). For the steam chamber, EFs were taken from application reference 17. For storage piles, EFs were taken from EPA AIRS(3/90) SCC 3-07-008-03. For screening and material transfer, due to lack of data, AP-42 Section 11.19.2 (Crushed Stone Processing, 1/95) and Section 13.2.4 (Aggregate Handling and Storage Piles, 1/95) were used.

The facility has an existing Permit to Construction (#0240-0036) for its Hog Fuel Boiler. The emission limits for TSP, PM-10, CO, NC<sub>x</sub>, SO<sub>2</sub>, and VOC are 5.4 lb/hr and 11.2 ton/yr, 4.9 lb/hr and 10.2 tons/hr, 13.7 lb/hr and 28.5 tons/hr, 2.3 lb/hr and 4.9 tons/yr, 0.5 lb/hr and 1.1 tons/yr, and 5.8 lb/hr and 12.1 tons/hr, respectively. In order to ensure the emissions of hog fuel boiler within the limits, the practical enforceable limits are given in the OP permit as follows: the average monthly fuel consumption shall not exceed 2.8 tons/hr x 24 hr/day x 30 day/month = 2,016 ton/month; and annually fuel consumption rate shall not exceed 2.8 tons/hr x 24 hr/day x 7 days/wk x 50 wk/yr/1.2 = 19,600 tons/yr.

The facility source tested the Hog Fuel Boiler in July 1990 at its design steam rate of 20,000 lb steam/hr. The grain loading was 0.07 gr/dscf. The heating value and moisture content of hog fuel used for the boiler were 3,857 Btu/lb and 56.2%, respectively based on recent fuel analysis (February 1995). Comparing with the heating value of Bark (4,500 Btu/lb) and wood (5,200 Btu/lb), the fuel used for the Hog Fuel Boiler is relatively low. In order to ensure the grain loading of the boiler within the standard, the enforceable steam flow rate is established in the OP permit, which is 20,000 lb steam/hr x (3,857 Btu/lb / (5,200 Btu/lb + 4,500 Btu/lb)/2 = 16,000 lb steam/hr. 5,200 Btu/lb and 4,500 Btu/lb are the heating values of wood and bark taken from AP-42 Appendix A-5, 1/95.

The  $NO_\chi$  emission rate is higher than its permit limit based on its fuel analysis and updated AP-42 Section 1.6 (Wood Waste Combustion In Boilers, 1/95), even though the boiler has not been changed. SCREEN modeling has been run and the adjusted  $NO_\chi$  permit limit has been given.

Within the life time of the OP permit, one source test is required for the following reasons: 1) the facility failed its first start-up source test; 2) barely passed the second source test by adding a fly ash separator screen; 3) it has been six years since the last test, the emissions may change due to wear and tear of equipment; 4) the heating value of the fuel used in boiler was relatively low based on recent fuel analysis (February 1995). If the facility fails the test a follow-up source test(s) shall be performed to demonstrate compliance.

PM-10 is the pollutant that triggers major source status for the facility according to DEQ's policy (April 4, 1996). No design capacities of wood process units were submitted. The proposed maximum process rates were used to estimate the PTE, which is above 100 tons per year (T/yr). The PTE of PM-10 is the sum of PM-10 from all the emission sources except storage piles and roads. The analysis can be found in Appendix A.

The applicant chose to net out of Tier I permitting by limiting the potential to emit of PM-10 to less than 100 T/yr. Besides hog fuel boiler mentioned above, the applicant accepted enforceable limits as follows: 1) Standby Diesel Boiler: #1 or #2 fuel oil usage shall not exceed 777,504 gallons per year, based on a rolling annual summation; 2) The maximum log processed shall not exceed 12.6 million board feet of log per year, based on a rolling year summation; 3) the maximum amount of veneer dried shall not exceed 6,640 thousand square feet per rolling year (at its equivalent 3/8" thickness); 4) the sawmill, veneer slicing, and clip/grading shall be operated in the building. The analysis of permit allowed throughput and limits can be found in Appendix B.

#### 2. Modeling

The EPA approved SCREEN2 model was run in 1989 when PTC #0240-0036 for the Hog Fuel Boiler was issued. The EPA approved SCREEN3 model has been run only for  $NO_\chi$  this time due to the change of permit limits. The following modeling methodology was used to predict the impact the boiler may have on the ambient air.

The NO<sub>x</sub> emission rate from the boiler stack was input into the SCREEN3 dispersion model as grams per second (g/s). Building downwash of the boiler building, sawmill building, veneer building, and steam chamber building were considered. The annual background concentration of NO<sub>x</sub> is 40 ug/m³ in Bonner County. The model output gave the maximum hourly NO<sub>x</sub> concentration. It was converted to an annual concentration by multiplying a conversion factor of 0.08. The modeling results predicted that by changing the permit limit to 45.36 T/yr will not violate the NAAQs, which is 100 ug/m³, annual average. The modeling input and results are shown in Appendix C.

#### 3. Area Classification

Ceda-Pine Veneer, Inc., is located in Samuels, Bonner County, Idaho, as shown in Figure 1. This area is located in AQCR 63. The area is classified as attainment or unclassifiable for all federal and state criteria air pollutants (i.e., PM, PM-10, CO,  $NO_x$ , and  $SO_2$ ).

#### 4. Facility Classification

The facility is not a designated facility as defined in IDAPA 16.01.01.006.25. The facility is classified as an A2 source because potential emissions are greater than 100 T/yr but actual emissions are less than 100 T/yr.

#### Regulatory Review

This operating permit is subject to the following permitting requirements:

| a.       | IDAPA 16.01.01.401        | Tier II Operating Permit;                 |
|----------|---------------------------|-------------------------------------------|
| b.       | IDAPA 16,01,01,403        | Permit Requirements for Tier II Sources;  |
| c.       | IDAPA 16.01.01.404,01(c)  | Opportunity for Public Comment;           |
| d.       | IDAPA 16.01.01.404,04     | Authority to Revise Operating Permits:    |
| e.       | IDAPA 16.01.01.406        | Obligation to Comply;                     |
| f.       | IDAPA 16.01.01.470        | Permit Application Fees for Tier II       |
|          |                           | Permits;                                  |
| q.       | <u>IDAPA 16.01.01.625</u> | Visible Emission Limitation;              |
| g.<br>h. | IDAPA 16.01.01.650        | General Rules for the Control of Fugitive |
|          |                           | Dust;                                     |
| i.       | IDAPA 16.01.01.675        | Fuel Burning Equipment Particulate        |
|          |                           | Matter;                                   |
| İ٠       | IDAPA 16.01.01.728        | Distillate Fuel Oil; and                  |
| j.<br>h. | 40 CFR 60 Subpart Dc      | Standard of Performance for Small         |
|          | *                         | Industrial-Commercial-Institutional Steam |
|          |                           | Generating Units.                         |

#### FEES

Fees apply to this facility in accordance with IDAPA 16.01.01.470. The facility is subject to permit application fees for Tier II permits of five hundred dollars (\$500.00). IDAPA 16.01.01.470 became effective on March 7, 1995.

#### AIRS

AIRS data entry sheet can be found in Appendix D.

## RECOMMENDATIONS

Based on the review of the Operating Permit application and on all applicable state and federal rules and regulations concerning the permitting of air pollution sources, the Bureau staff recommends that Ceda-Pine Veneer, Inc., in Samuels be issued a Tier II Operating Permit for the sources that exist at the facility. Staff also recommends that the facility be notified of the Tier II permit fee requirement in writing. This fee will be applicable upon issuance of the permit.

BRM\SJR\YC:jrj...\permit\cedapine\c~pinef.TAM

cc: G. Burr, NIRO Source File

COF

## APPENDIX A

Table A-1 Date: 21-May-96
Ceda Pine Potential to Emit (pseudo-PTE) emissions summary
Based on its given maximum rate rather than design capacity(NA)

| Source             | PM     |           | PM-10  |        |
|--------------------|--------|-----------|--------|--------|
|                    | lb/hr  | ton/yr    | lb/hr  | ton/yr |
| Hogged fuel boiler | 5.4    | 11.2      | 4.9    | 10.2   |
| Standby diesel boi | 0.18   | 0.78      | 0.18   | 0.78   |
| Process and manu   | 99.19  | 341.73    | 62.32  | 219.98 |
| Material handling  | 46.20  | 202.34    | 44.67  | 195.66 |
| Storage tank       | ****   | **** **** | ****   |        |
| total              | 150.96 | 556.05    | 112.07 | 426.62 |

#### Table A-2

Ccap Pine Veneer, Inc.

21-May-96 Date:

Engineer: Yihong

Hogged Fuel Boiler and Standby Diesel Boiler Technical Analysis

Estimation of maximum allowable hourly and annually fuel combustion rate

File name:

10BOLPTE.wk1

Boiler conversion factors (AP-42,1/95, A-29)

Remark

1 lb steam/hr = 1.7E+03 BTU/hr

1.4 - 1.7E+03 but/hr is needed to generate 1 lb steam/hr.

Using 1.7E+03 Btu/hr is conservative

Note: boiler efficiency has been considered here already

#### 1. HOGGED FUEL BOILER

1.1 Fuel data (Per application, tested 2/95, received 4/7/95)

3,857 btu/lb Heating value(as received) 56.19 % Moisture content 0.1 % Nitrogen content

1.2 Boiler design capacity

20,000 lb steam/hr=

34 MM BTU/hr

(1.7E+03 BUT/hr)/(1 lb steam/hr)\*(20,000 lb steam/hr)/1e+06=34 MM BTU/hr

#### 1.3 Permited limits (# 0240-0036)

|       | lb/hr | tons/yr |
|-------|-------|---------|
| PM    | 5.4   | 11.2    |
| PM-10 | 4.9   | 10.2    |
| CO    | 13.7  | 28.5    |
| NOx   | 2.3   | 4.9     |
| SO2   | 0.5   | 1.1     |
| VOC   | 5.8   | 12.1    |

1.4 Emission factors (EFs) with multicone controlled

Fuel data (AP-42, 1/95, A-5)

5,200 Btu/lb Heating value =

Moisture content 50 %

PM:

per application (4/7/95) and test report in source file, tested 7/90

No lbs/hr fuel input data were recored even thought it is the requirement of permit #0240-0036 sec. 3.1. Therefore, the average fuel data from AP-42 are

used to estimate EFs.

source test data

CO:

Emission rate(PM,avg)=

Emission Factor(PM,EF)=

1.19 lb/ton fuel used

EF, PM=3.9(lb/hr)/34(mmbut/hr)\*4,500(but/lb)\*2000(lb/ton)/1E+6(btu/mmbtu)

Emission rate(CO,avg)=

5.3 lb/hr

3.9 lb/hr

source test data 1.62 lb/ton fuel used

Emission Factor(CO,EF)=

3.6 lb/ton fuel used

EF, PM=5.3(lb/hr)/34(mmbut/hr)\*4,500(but/lb)\*2000(lb/ton)/1E+6(btu/mmbtu)

NOx(EF=: SO2(EF)=

0.075 lb/ton fuel used

AP-42, 1/95 T1.6-2 & foot note "c" AP-42, 1/95 T1.6-2

VOC(EF)=

0.22 lb/ton fuel used

#### 1.5 Combustion rate (ton/hr)

| Max. hourly =   | 3     | ton/hr |
|-----------------|-------|--------|
| Max. annually = | 26208 | ton/yr |
| Nor. annually = | 21840 | ton/yr |

Per application combustion rate, received 4/7/95 and source test

per application, 7day \*24hr \*52wk

Nor = Max./1.2

Max. hourly = 3.27 ton/hr Max. annually = 27461.54 ton/yr

per assumed fuel data and source test

t/h=20,000(lb steam/hr)\*(1.7e+3(btu/lb steam)/4,500(btu/lb)/2000(lb/ton)

22884.62 ton/yr Nor. annually = Nor = Max./1.2 Table A-2 continue

|          |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1 4010      | 5 A=4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | COI             |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 1.6 Emi  | ssions                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|          | lb/hr                                                                                                                                                                | t/y,max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t/y,nor. |             | Per application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| PM       | 3.58                                                                                                                                                                 | 15.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.03    |             | emission (lb/hr) = EF(lb/ton fuel)*(ton fuel/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| PM-10    | 3.58                                                                                                                                                                 | 15.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.03    |             | emission $(t/y) = EF(lb/ton fuel)*(ton fuel/yr)/2000(lb/ton)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |
| CO       | 4.86                                                                                                                                                                 | 21.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.70    |             | Nor = Max./1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |
| NOx      | 10.80                                                                                                                                                                | 47.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39.31    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| SO2      | 0.23                                                                                                                                                                 | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.82     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| VOC      | 0.66                                                                                                                                                                 | 2.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.40     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|          |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|          | lb/hr                                                                                                                                                                | t/y,max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t/y,nor. |             | per assumption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |
| PM       | 3.90                                                                                                                                                                 | 16.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.65    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|          |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             | , , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |
|          |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|          |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             | * · · * * * * * · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |
|          |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|          |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| 100      | 0.72                                                                                                                                                                 | 5.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.04     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| O CTAN   | STADE IN                                                                                                                                                             | recer son                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | * ED     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|          |                                                                                                                                                                      | iesel du                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LEN      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|          |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 140 000  | her/anl     | AD 42 1/06 A 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |
| -        |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | _           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |
| Sulfur c | ontent ==                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5      | 70          | IDAPA 10.01.01.728                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
|          |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|          |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .~       | NANA BITTIO | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ***             |
| 10,000   | ib steam                                                                                                                                                             | /Dr=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17       | MM DIU/RF   | (1./E+03 BU 1/hr)/(1 to steam/hr)*(10,000 to steam/hr)/1e+00=1/ MM B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U/nr            |
|          |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| 2.3 Emi  |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|          |                                                                                                                                                                      | Ser)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|          |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             | AP-42, 1/95, T1.3-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |
|          |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|          |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|          |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| SO2      | 72                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| VOC      | 0.2                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | •           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|          |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| *2.4 Co  | mbustion                                                                                                                                                             | rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| *Max. h  | ourly =                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 89       | gal/hr      | Per application combustion rate, received 4/7/95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| Max. an  | nually =                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 777504   | gal/yr      | Max. gal/yr = Max. 89 (gal/hr)*7day*24hr*52 weeks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |
| *Nor. a  | nnually =                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 647920   | ton/yr      | Nor = Max./1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |
|          |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| 2.5 Emi: | ssions                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|          |                                                                                                                                                                      | t/y,max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t/y,nor. |             | emission $(lb/hr) = EF(lb/le+3 gal)*(gal/hr)/1000(gal/le+3 gal)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| PM       |                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -        |             | The state of the s |                 |
|          |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|          |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|          |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|          |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|          |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| YUC      | V.V4                                                                                                                                                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|          | PM PM-10 CO NOx SO2 VOC  PM PM-10 CO NOx SO2 VOC  2. STAI 2.1 Fue Heating Sulfur e 2.2 Boil 10,000  2.3 Emi PM PM10 CO NOx SO2 VOC  *2.4 Co *Max. I Max. an *Nor. as | PM 3.58 PM-10 3.58 CO 4.86 NOx 10.80 SO2 0.23 VOC 0.66    lb/hr PM 3.90 PM-10 3.90 CO 5.30 NOx 11.77 SO2 0.25 VOC 0.72  2. STANDBY D 2.1 Fuel data Heating value = Sulfur content =  2.2 Boiler design 10,000 lb steam  2.3 Emission fact (lb/10^3 PM 2 PM10 2 CO 5 NOx 20 SO2 72 VOC 0.2  *2.4 Combustion *Max. hourly = Max. annually = *Nor. annually = | Ib/hr    | Ib/hr       | 1.6 Emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Per application |

Table A-3

Date: 21-May-08

Ceda Pine Veneer, inc.

ESTIMATING POTENTIAL TO EMIT (PTE, PM-10) FROM PROCESS AND MANUFACTURING OPERATIONS

Note: Unless specified, all data taken from application submittal.

1, ASSUMPTIONS:

Moisture content of log:

50% 15% (per app.) (assumption)

Mointure content of veneer; Max. = 1.2"Nor.

(per app.)

2. CONVERSION FACTORS:

t ton of log = 1 Bon Dry Ton(BDT) of log/(1-maisture content percetage of log) 1 MBF (thousand board feet) =

4.8 tone of log (Pinehuret PM:10 SIP,2/5/92,B-45)

## 3. PM EMISSIONS (E):

#### 3.1 OUTDOOR ACTIVITIES

| Production throughput - |            | 12.6              | MMBF of I | og/yr      | (per app.) |        |          |           |          |                                                                                                                                                                                                                                   |  |  |
|-------------------------|------------|-------------------|-----------|------------|------------|--------|----------|-----------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Process                 | Hourty Pro | Hourly Production |           | Production | Rate Max.  | Emise  | on       | Emissions | Annualty | Remark                                                                                                                                                                                                                            |  |  |
|                         | Max. Flate | 1                 | hour      | hourly     | annually   | Factor | <b>a</b> | hourly    | annualiy |                                                                                                                                                                                                                                   |  |  |
|                         |            | unit              | hr        | ton/hr     | lon/yr     |        | usuit    | lb/hr     | ton/yr   |                                                                                                                                                                                                                                   |  |  |
| Pt Deck saw             | 15.75      | MBF               | 1752      | 75.60      | 132451     | 6.2    | lb/ton   | 15.12     | 13.25    | (MBF/hr)=12.6 (MMBF of log/yr)/800(hr/yr)*1000 operating hour = 800 hr/4000 hr * 8780hr app. 7/19/95 and 1/8/95, EPA 450/4-90-003, p143 (MBF/hr)= (MBF/yr)/operating hour(OP HF)(hr/yr) E(T/yr) = E(b/hr)*OP HFI(hr/yr)/2000(b/T) |  |  |
| p2 filing debarker      | 3.15       | MER               | 8760      | 15.12      | 132451     | 0.011  | lb/ton   | 0.17      | 0.73     | (MBF/hr)=12.6 (MMBF of log/yr)/4000(hr/yr)*1900                                                                                                                                                                                   |  |  |
| p3 Chop saw #1          | 3.15       | MBF               | 8766      | 15.12      | 132451     | 0.2    | ib/ton   | 3.02      | 13,25    | same as p1&p2 Deck saw                                                                                                                                                                                                            |  |  |
| p4 Rosser head debarker | 1.20       | MBF               | 8760      | 5.76       | 50458      | 0.011  | lb/ton   | 0.06      | 0.28     | max. rate app.7/19/95. AP-42,T10.3-1(2/80)                                                                                                                                                                                        |  |  |
| p5 Chop saw #2          | 7.05       | BOT               | 8760      | 14,11      | 123600     | 0.2    | ib/ton   | 2,82      | 12.36    | max. rate app.7/19/95. AP-42,T16.3-1(2/80)                                                                                                                                                                                        |  |  |
| p7 Chipper#1            | 7.22       | BDT*              | 8760      | 14,44      | 126491     | 0.1    | ib/ton   | 1,44      | 6.32     | app. 7/19/95. AP-42,T10.3-1(2/80) EFs for sawing with 50% off used here, Because Chipper is kind of partial closure                                                                                                               |  |  |
| p8 Chipper #2           | 0.14       | TGB               | 8750      | 0.29       | 2523       | 0.1    | lb/ton   | 0.03      | 0.13     | same as Chipper #1                                                                                                                                                                                                                |  |  |
| p9 Screen out           | 7.22       | BDT*              | 5760      | 14,44      | 126491     | 0.071  | lb/ton   | 1.03      | 4.49     | app.7/19/95. AP-42,T11.19.2-2(1/95)                                                                                                                                                                                               |  |  |
| p11 Falcon hog          | 2.12       |                   | 8760      | 4.23       | 37055      | 9.1    |          | 0.42      |          | same as Chipper#1                                                                                                                                                                                                                 |  |  |
| p17 Knife hog(Veneer)   | 0.14       | BOT               | 8760      | 0.16       | 1426       | 0.1    | lb/ton   | 0.02      | 0.07     | same as Chipper#1                                                                                                                                                                                                                 |  |  |
| SUM                     |            |                   |           |            |            |        |          | 24.13     | 52.72    |                                                                                                                                                                                                                                   |  |  |

## 3.2 INDOOR ACTIVITIES

| sume indoo | r control effic | zienc) | - |   |  |  |  | 0% |
|------------|-----------------|--------|---|---|--|--|--|----|
|            |                 |        |   | _ |  |  |  |    |

| Assume indoor control et | icancy = |                                 |      | ¥7T               | •                     |                     |        |                     |                      |                                                                                                                                                                    |
|--------------------------|----------|---------------------------------|------|-------------------|-----------------------|---------------------|--------|---------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Process                  | •        | Hourly Production<br>Max. Flate |      | Production hourly | Hate Max.<br>annually | Emission<br>Factors |        | Emissions<br>hourly | Annually<br>annually | Remark                                                                                                                                                             |
|                          |          | ⊭nít                            | hr   | ton/hr            | ton/yr                |                     | unit   | lb/hr               | lon/yr               |                                                                                                                                                                    |
| P6 Sawmill               | 7.05     | BOT                             | 8760 | 14,11             | 123600                | 0.2                 | lb/ton | 25,40               | 111,24               | app. AP-42,T10.3-1(2/80) material balance: rate p5-p6 Assume: wood was sa 9 times/log E(lb/hr) = EF (lb/T)* T of log processed/ /hr*(1-contl efficiency)*cut times |
| p14 Silcer               |          |                                 |      |                   |                       |                     |        | negligible          |                      | Steam was used during slicing and it is an indoor activety.  Therefore, the emissin from it is negligible                                                          |
| p16 clip/grade           |          |                                 | 8760 | 2.60              | 22610                 | 0.2                 | lb/ton | 0.52                | 2,28                 | material balance:p15(BDT)=p15(BDT) P18=P15"(1=50%)/(1=15%)                                                                                                         |
|                          |          |                                 |      |                   |                       |                     |        |                     |                      |                                                                                                                                                                    |

SUM

25.92 113.52

## 3.3 CYCLONES

ACFM: actually cubit feet per minute.

| Process Hourly Production Max, Plate |            |                              |                                     |                                                                |                                                                        |                                                                                     | Emissions<br>hourly                                                                             | Annually annually                                                                                                                                                                                                                                                                       | Remark                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------|------------|------------------------------|-------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      | unit       | hr                           | acím                                | •                                                              |                                                                        | unit                                                                                | lb/hr                                                                                           | ton/yr                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1,2                                  | BOT        | 87 <b>6</b> 0                | 2300                                | ambient                                                        | 0.63                                                                   | gr/scf                                                                              | 0.59                                                                                            | 2.69                                                                                                                                                                                                                                                                                    | app.4/7/95, 7/19/95. AP-42,T10.4,1(2/80) assume acf-secf. E(ib/hr) = 0.03(gr/scf)/7000(gr/ib)* _(scf/min)*60(min/hr)                                                                                                                                                                                                                                                                                |
| NA                                   | BOT        | 8760                         | 1000                                | ambient                                                        | 0.03                                                                   | grisci                                                                              | 0.26<br>0.85                                                                                    | 1.13<br>3.72                                                                                                                                                                                                                                                                            | app.4/7/95. 7/19/95. AP-42,T10.4.1(2/80)                                                                                                                                                                                                                                                                                                                                                            |
|                                      | Max, Plate | Max, Rate<br>unit<br>1,2 BDT | Max, Rate hour unit hr 1.2 BDT 8760 | Max, Rate hour Gas flow r<br>unit hr acfm<br>1,2 BDT 8760 2300 | Max, Rate hour Gas flow r temp, unit hr acfm 1,2 BDT 8760 2300 ambient | Max, Rate hour Gas flow r temp. Factors unit hr acfm 1,2 BDT 8760 2300 ambient 0.03 | Max, Rate hour Gas flow r temp, Factors unit hr acfm unit 1,2 BDT 8760 2300 ambient 0.03 gr/scf | Max, Plate         hour         Gas flow r temp, unit temp, unit thr         Factors hourly unit lb/hr           1,2 BDT         6760         2300 ambient         0.03 gr/scf         0.59           NA         SDT         8760         1000 ambient         0.03 gr/scf         9.26 | Max, Plate         hour         Gas flow r temp.         Factors         hourly         anually           unit         hr         acfm         unit         lb/hr         ton/yr           1.2         BDT         8760         2300 ambient         0.03 gr/scf         0.59         2.59           NA         SDT         8760         1000 ambient         0.03 gr/scf         9.26         1.13 |

contine 🐫

#### 3.4 STEAM CHAMBERS AND THE STEAM DRYER

Convertion factors

t MBF, thousand board feet =

1.75 tons of rought green tumber (Pinehurst PM10 SIP,2/5/92,8-45)

1 MBF, thousand board feet -

8/3 MSF, thousand 3/8" square feet

| Process              | Hourly Production<br>Max. Rate | Operating Productions hour |            | Emission<br>Factors | Emissions<br>hourly | Annually<br>annually |                                  |
|----------------------|--------------------------------|----------------------------|------------|---------------------|---------------------|----------------------|----------------------------------|
|                      | unit                           | hr ton/h                   | r ton/yr   | unit                | lb/hr               | tonlyr               |                                  |
| P12 Steam chamber #1 | 1,26 MBF                       | 8760                       | 2.21 19389 | 1.59 Ib/MBF         | 2.01                | 8,81                 | app. 4/7/95, raf. 17             |
|                      |                                |                            |            |                     |                     |                      | E(lb/hr) =(M8F/hr)*EF(lb/M8F)    |
| P13 Steam chamber #2 | 1,26 MBF                       | 5760                       | 2.21 19369 | 1.59 Ib/MBF         | 2.01                | 6,81                 | same at steam chamber #1         |
| p15 Steam dryer      | 0.95 MSF                       | 8760                       |            | 7.8 Ib/MSF          | 7.40                | 32,41                | app.7/19/95, AP-42,T10.3-2(2/80) |
|                      | 2.53 MBF                       | 8760                       | 4,43 38778 |                     |                     |                      | 0.8 lb/MSF is used here.         |
| SUM                  |                                |                            |            |                     | 11,42               | 50.02                | It is the most conservitive data |

PM emissions from process and manufacturing operation are:

Total(PM-10) =

lb/hr Ton/yr 62.32 219.98

#### 4. VOC EMISSIONS

#### 4.1 STEAM CHAMBERS AND THE STEAM DRYER

Convertion factors

1 MBF, thousand board feet #

1.75 tons of rought green lumber (Pinehurst PM10 SIP,2/5/92,8-45)

1 MBF, thousand board feet = 8/3 MSF, thousand 3/8" square feet

| Process              | Hourly Production<br>Max. Rate |      | Production hourly | Rate Max. | Emission<br>Pactors |      | Emissions<br>hourly | Annually<br>annually |                                  |
|----------------------|--------------------------------|------|-------------------|-----------|---------------------|------|---------------------|----------------------|----------------------------------|
|                      | tiqu                           | h¢   | ton/hr            | ton/yr    | nş                  | nit  | lbihr               | ton/yr               |                                  |
| P12 Steam chamber #1 | 1.26 MBF                       | 8760 | 2.21              | 19389     | 1.67 lb             | MBF  | 2.11                | 9,25                 | app.4/7/95, ref, 17              |
|                      |                                |      |                   |           |                     |      |                     |                      | E(fb/hr)=(MBF/hr)*EF(fb/MBF)     |
| P13 Sleam chamber #2 | 1,28 MBF                       | 8760 | 2.21              | 19389     | 1.67 lb             | MBF  | 2.11                | 9.25                 | same as steam chamber #1         |
| p 15 Steam dryer     | 0,95 MSF                       | 8780 |                   |           | 0.8 16              | /MSF | 0.76                | 3.32                 | app.7/19/95. AP-42.T10.3-2(2/60) |
|                      | 2.53 M⊕F                       | 8760 | 4,43              | 38778     |                     |      |                     |                      | 0.8 lb/MSF is used here.         |
| SUM                  |                                |      |                   |           |                     |      | 4.98                | 21.83                | It is the most conservitive data |

VOC emissions from process and manufacturing operation are:

Total(VOC) #

lb/hr Ton/yr 4.98 21.89

POTENTIAL TO EMIT ESTIMATION FOR SOLID MATERIAL TRANSPORT, HANDLING, AND STORAGE ASSUMPTION

Moisture content of green wood = Moisture content of dry wood =

50% 15%

PM EMISSIONS

| PM EMISSIONS                        |            |             |              |                  |                          |        |                  |                          |                         |                                                                                                                                                               |                       |                                   |      |
|-------------------------------------|------------|-------------|--------------|------------------|--------------------------|--------|------------------|--------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------|------|
| 1. STORAGE PILES                    |            |             |              |                  |                          |        |                  |                          |                         |                                                                                                                                                               |                       |                                   |      |
| Process                             | Hourly p   |             | Operating    |                  |                          | EFs    |                  | Emissi                   |                         | Remark                                                                                                                                                        |                       |                                   |      |
|                                     | Max. Rat   | unit        | hour<br>hr   | hourly<br>ton/hr | annually<br>ton/yr       | PM-16  | <b>&gt;</b> unit | PM-10<br>hourly<br>ib/hr | u<br>annually<br>ton/yr | app. 4/7/95, 7/19/95, AP-42,T8.19.1-1(9/91) EPA AIR(3/90) p.143 3-07-008-03 E(lb/hr) = E(T/yr)*2000(lb/T)/op hr(hr/yr) assume:EP(hog fuel) 80 % EF of sawdust |                       |                                   |      |
|                                     |            |             | -            |                  |                          |        |                  |                          |                         |                                                                                                                                                               |                       |                                   |      |
| *ST2 Sawdust pile                   | 1.09       | BDT         | 8760         | 2.18             | 19097                    | 0.36   | lb/ton           | 0.78                     | 3.44                    | taubwat                                                                                                                                                       |                       |                                   |      |
| *ST3 Fuel house(hog fuel)           | 2.56       | BDT         | 8760         | 5.12             | 44851                    | 0.288  | lb/ton           | 0.74                     | 3.23                    | Half incl                                                                                                                                                     | osed, assume cni      | ile 50%                           |      |
| *ST4 Storage pile(hog fuel)         | 7.5        | BDT         | 8760         | 15.00            | 131400                   | 0.288  | lb/ton           | 4.32                     | 18.92                   |                                                                                                                                                               |                       |                                   |      |
| *STS Bin bunker no bark             | 0.29       | BDT         | 8760         | 0.34             | 2989                     | 0.288  | ib/ton           | 0.10                     | 0.43                    |                                                                                                                                                               |                       |                                   |      |
| (dry hog fuel+sawdust)              |            |             |              |                  |                          |        |                  |                          |                         |                                                                                                                                                               |                       |                                   |      |
| *ST6 Ash bunker                     | 0.29       | BDT         | 8760         | 0.29             | 2540                     | 0.288  | lb/ton           | 0.08                     | 0.37                    |                                                                                                                                                               |                       |                                   |      |
| * inconsistency of two app. (7/17/9 | 5 & 4/7/95 | }           |              |                  |                          |        |                  |                          |                         |                                                                                                                                                               |                       |                                   |      |
| SUM                                 |            |             |              |                  |                          |        |                  | 6.02                     | 26.38                   |                                                                                                                                                               |                       |                                   |      |
| 2. BINS                             | ** (*      |             |              | <b>.</b>         |                          |        |                  |                          |                         |                                                                                                                                                               |                       |                                   |      |
| Process                             | Hourly P   |             | Operating    |                  |                          | EFs    |                  |                          | ions (PM1               | U)                                                                                                                                                            |                       |                                   |      |
|                                     | Max. Rat   |             | hour         | hourly           | annually                 |        |                  |                          | annually                | 47710                                                                                                                                                         | e alsoine in          | A T10 4 70000                     |      |
| copt colin kin                      | 7 22       | unit<br>BDT | hr<br>8760   | ton/hr<br>14.44  | ton/yr<br>126491         | ,      | unit<br>lb/ton   | lb/hr<br>14,44           | ton/yr<br>63.25         |                                                                                                                                                               | material balance      | 42,T10.4-3(7/79)                  |      |
| ST1 Chip surge bin                  | 1.22       | DØ I        | 0700         | £14.444          | 170-21                   |        | 30/300           | 149,444                  | 55.23                   |                                                                                                                                                               | is used as EF(PA      | -                                 |      |
|                                     |            |             |              |                  |                          | 2      | ib/ton           | 28,88                    | 126.49                  | bin loade                                                                                                                                                     |                       | 11-101.                           |      |
| ST7 Chip bin                        | 0.15       | BDT         | 8760         | 0.18             | 1546                     | ì      |                  | 0.18                     | 0.77                    | bis vent                                                                                                                                                      |                       |                                   |      |
| or, ompour                          | ****       |             | ****         | 0.10             | 2240                     |        | lb/ton           | 0.35                     | 1.55                    |                                                                                                                                                               | unt                   |                                   |      |
|                                     |            |             |              |                  |                          | -      | *******          |                          |                         | 0111 (0440)                                                                                                                                                   |                       |                                   |      |
| SUM                                 |            |             |              |                  |                          |        |                  | 43.85                    | 192.06                  |                                                                                                                                                               |                       |                                   |      |
| 3. TRANSFER/CONVEYOR                |            |             |              |                  |                          |        |                  |                          |                         |                                                                                                                                                               |                       |                                   |      |
| Wind speed ==                       |            | 9           | mph          | (рег арр         | dication 7               | 19/95) |                  |                          |                         |                                                                                                                                                               |                       |                                   |      |
| Moisture content =                  |            | 50 9        | 6            | (per app         | lication 7               | 19/95) |                  |                          |                         |                                                                                                                                                               |                       |                                   |      |
| k(PM) =                             |            | 1           |              | (AP-42,          | , 1/95, 13.              | 2.4)   |                  |                          |                         |                                                                                                                                                               |                       |                                   |      |
| K (<30 aum) ==                      |            | 0.74        |              |                  | , 1/ <del>9</del> 5, 13. |        |                  |                          |                         |                                                                                                                                                               |                       |                                   |      |
| K (<10 um) =                        |            | 0.35        |              |                  | . 1/95, 13.              |        |                  |                          |                         |                                                                                                                                                               |                       |                                   |      |
| Production througput =              |            |             |              |                  | MMBF o                   |        |                  |                          |                         |                                                                                                                                                               |                       |                                   |      |
| Process                             | Hourly Pr  |             | Operating    |                  |                          |        | EFs              |                          | Emission                | s (PM10)                                                                                                                                                      |                       |                                   |      |
|                                     | Max. Rate  |             | pont         | hourly           | annually                 | points |                  |                          | hourly                  | annually                                                                                                                                                      |                       |                                   |      |
|                                     |            | usit        | hr           | ton/hr           | ton/yr                   |        |                  | unit                     | lb/hr                   | ton/yr                                                                                                                                                        |                       |                                   |      |
| TR1 infeed deck                     | 15.75      | mbf         | 1752         | 75.60            | 132451                   | NA     | 0.02             | lb/ton                   | 0.00                    | 0.00                                                                                                                                                          | (MBF/hr)=12.6<br>1000 | i(MMBF of log/yr)/80              | O(hr |
|                                     |            |             |              |                  |                          |        |                  |                          |                         |                                                                                                                                                               | app.7/19/95,1/9       | 5/ <del>96</del> , AP-42.T10.3-1( | 2/8  |
|                                     |            |             |              |                  |                          |        |                  |                          |                         |                                                                                                                                                               |                       | BF/yr)/op hr(hr/yr)               |      |
|                                     |            |             |              |                  |                          |        |                  |                          |                         |                                                                                                                                                               |                       | '0.0032*(U/5)^(1.3)/(             | M/2  |
|                                     |            |             |              |                  |                          |        |                  |                          |                         |                                                                                                                                                               | AP-42 13.2.4 e        | •                                 |      |
| TR2 chain conveyor                  | 0.015      |             | 8760         | 0.03             | 263                      | 1      |                  | lb/ton                   | 0.00                    |                                                                                                                                                               |                       | aterial handled(lb/hr)            | •    |
| TR3 2 vib.2 belt conveyors          | 2.115      |             | 8760         | 4.23             | 37055                    | 6      |                  | lb/ton                   | 0.43                    |                                                                                                                                                               | drop points           |                                   |      |
| TR4 2 chain conveyor                | 2.115      |             | 8760         | 4.23             | 37055                    | 1      |                  | lb/ton                   | 0.07                    | 0.31                                                                                                                                                          |                       |                                   |      |
| TR7 velt conveyors                  | 0.233      |             | 8760         | 0.47             | 4079                     | 1      |                  |                          | 0.01                    | 0.03                                                                                                                                                          | ****                  |                                   |      |
| TR5 front end loader                | 1.875      |             | 8760<br>9760 | 3.75             | 32850                    | 2      | 0.02             | lb/ton                   | 0.13                    |                                                                                                                                                               | app.7/19/95 and       |                                   |      |
| TR6 front end leader                | 1.089      |             | 8760         | 2.18             | 19086                    | 2      | 0.02             |                          | 0.07                    |                                                                                                                                                               | -                     | A. assumo: 2 point                |      |
| TR 8 from end bucket                | 1.179      |             | 8760         | 2.36             | 20656                    | 2      |                  |                          | 0.08                    |                                                                                                                                                               | •                     | IA. assume: 2 point               |      |
| TR 9 front end bucket               | 0.600      | DDI         | 8760         | 1.20             | 10512                    | 2      | 0.02             | lb/ton                   | 0.04                    | 0.18                                                                                                                                                          | transfer point N      | IA. assume: 2 point               |      |
| SUM                                 |            |             |              |                  |                          |        |                  |                          | 0.82                    | 3.60                                                                                                                                                          |                       |                                   |      |
| without count pile                  | PM-10      |             |              |                  |                          |        |                  |                          |                         |                                                                                                                                                               |                       |                                   |      |
|                                     | lb/hr      | t/y         |              |                  |                          |        |                  |                          |                         |                                                                                                                                                               |                       |                                   |      |
| TOTAL                               | i35+j62    | j35+k62     |              |                  |                          |        |                  |                          |                         |                                                                                                                                                               |                       |                                   |      |
|                                     | 44 67      |             |              |                  |                          |        |                  |                          |                         |                                                                                                                                                               |                       |                                   |      |

i35+j62 j35+k62 44.67 195.66

# APPENDIX B

Table 8-1

| Ceda Pine emissions summary |        |            |             |       |       |       |        |             |       |       | Date: | 21-May-9 |
|-----------------------------|--------|------------|-------------|-------|-------|-------|--------|-------------|-------|-------|-------|----------|
| Source                      | PM     | PM10       |             | co    |       | NOx   |        | SO2         |       | voc   |       |          |
|                             | lb/hr  | t/y        | lb/hr       | ₩y    | lb/hr | Uу    | lp/hr  | t/y         | lb/hr | t∕y   | lb/hr | t/y      |
| Hogged fuel boile           | 5.40   | 11.20      | 4.90        | 10.20 | 13.70 | 28.50 | 5.72   | 25.00       | 0.50  | 0.95  | 5.80  | 12.10    |
| Standby diesel bo           |        | 0.78       | 0.18        | 0.78  | 0.45  | 1.94  | 1.78   | 7.78        | 8.41  | 27.99 | 0.02  | 80.0     |
| process and man             | 51.73  | 71.51      | 31.84       | 50.01 |       |       | www.ra |             |       |       | 14,40 | 80.47    |
| material handling           | 46.20  | 47.78      | 26.84       | 27.51 |       |       |        |             |       |       |       |          |
| storage tank                |        | ********** | <del></del> |       |       |       |        | <del></del> |       |       | 9.09  | 0.40     |
| total                       | 103.50 | 131.24     | 63.76       | 88.50 | 14.15 | 30,44 | 7.50   | 32.78       | 6.91  | 28,94 | 20.31 | 73.05    |

Table B-2

Date:

21-May-96

Ceap Pine Veneer, Inc.

Hogged Fuel Boiler and Standby Diesel Boiler Technical Analysis permitted maximum allowable hourly and annually fuel combustion rate

Boiler conversion factors (AP-42,1/95, A-29)

Remark

1 ib steam/hr =

1.7E+03 BTU/hr

1.4 - 1.7E+03 but/hr. using 1.7E+03 is conservitive

Note: boiler efficiency has been considered here already

#### 1. HOGGED FUEL BOILER

1.1 Fuel data (Per application,tested 2/95, received 4/7/95)

Heating value(as received) 3,857 btu/lb 56.19 % Moisture content 0.1 % Nitrogen content

1.2 Boiler design capacity

20,000 |b steam/hr=

34 MM BTU/hr

(1.7E+03 BUT/hr)/(1 lb steam/hr)\*(20.000 lb steam/hr)/1e+06=34 MM BTU/hr

#### 1.3 Permited limits (# 0240-0036)

|       | lb/hr | tons/yr |  |  |  |
|-------|-------|---------|--|--|--|
| PM    | 5.4   | 11.2    |  |  |  |
| PM-10 | 4.9   | 10,2    |  |  |  |
| ÇO    | 13.7  | 28,5    |  |  |  |
| NÖX   | 2.3   | 4.9     |  |  |  |
| SO2   | 0.5   | 1.1     |  |  |  |
| VOC   | 5.8   | 12.1    |  |  |  |

1.4 Emission factors (EFs) with multicone controlled

Fuel data (AP-42, 1/95, A-5)

4,850 Btu/lb Heating value = Moisture content 50 %

PM:

Emission rate(PM,avg)=

Emission Factor(PM,EF)=

1.11 lb/ton fuel used

5.3 lb/hr

24536.08 ton/yr

CO:

Emission rate(CO,avg)=

Emission Factor(CO,EF)= 1.51 lb/ton fuel used NOx(EF=: 3.6 lb/ton fuel used SO2(EF)= 0.075 lb/ton fuel used VOC(EF)# 0.22 lb/ton fuel used

3.9 ib/hr source test data

EF, PM=3.9(lb/hr)/34(mmbut/hr)\*4,500(but/lb)\*2000(lb/ton)/1E+6(btu/mmbtu)

No ibs/hr fuel input data were recored even thought it is the requirement of

permit #0240-0036 sec. 3.1. Therefore, the average fuel data from AP-42 are

source test data

used to estimate EFs.

EF. PM=5.3(lb/hr)/34(mmbut/hr)\*4,500(but/lb)\*2000(lb/ton)/1E+6(btu/mmbtu)

AP-42, 1/95 T1.6-2 & foot note "c"

AP-42, 1/95 T1.8-2

### 1.5 Combustion rate (ton/hr)

| Mex. hourly =   | 2.8   | ton/hr |
|-----------------|-------|--------|
| Max. annually = | 23520 | ton/yr |
| Nor. annually = | 19600 | ton/yr |

Per application combustion rate, received 4/7/95 and source test

per application (4/7/95) and test report in source file, tested 7/90

per application, 7day\*24hr\*52wk

Nor = Max./1.2

| Max. hourly =   | 3.51     | ton/hr |
|-----------------|----------|--------|
| Max. annually = | 29443.30 | ton/yr |

per assumed fuel data and source test

t/h=20.000(lb steam/hr)\*(1.7e+3(btu/lb steam)/((4,500+5200)/2)(btu/lb)/2000(lb/ton)

Nor = Max./1.2

#### 1.6 Emissions

Nor. annually =

|       | lb/hr | t/y,max. | t/y,nor. |  |  |
|-------|-------|----------|----------|--|--|
| PM    | 3,12  | 13.08    | 10.90    |  |  |
| PM-10 | 3.12  | 13.08    | 10.90    |  |  |
| co    | 4.23  | 17.78    | 14.82    |  |  |
| NOx   | 10.08 | 42.34    | 35.28    |  |  |
| SO2   | 0.21  | 0.88     | 0.74     |  |  |
| VOC   | 0.62  | 2.59     | 2.16     |  |  |

Per application

emission (lb/hr) = EF(lb/ton fuel)\*(ton fuei/hr)

emission (t/y) = EF(lb/ton fuel)\*(ton fuel/yr)/2000(lb/ton)

Nor = Max./1.2

| ٣ | • | ы | 0 | я | -2 |
|---|---|---|---|---|----|
|   |   |   |   |   |    |

|       | lb/hr | t/y,max. | t/y,nor. | per assumption                                                |
|-------|-------|----------|----------|---------------------------------------------------------------|
| PM    | 3,90  | 16.38    | 13.65    | emission (lb/hr) = EF(lb/ton fuel)*(ton fuel/hr)              |
| PM-10 | 3.90  | 16.38    | 13.65    | emission $(t/y) = EF(lb/ton fuel)*(ton fuel/yr)/2000(lb/ton)$ |
| ÇO    | 5.30  | 22.28    | 18.55    | Nor = Max J1.2                                                |
| NOx   | 12.62 | 53.00    | 44.16    |                                                               |
| SO2   | 0.26  | 1.10     | 0.92     |                                                               |
| VOC   | 0.77  | 3.24     | 2.70     |                                                               |

## 2. STANDBY DIESEL BOILER

## 2.1 Fuel data

Heating value = 140,000 btu/gal AP-42, 1/95, A-5
Sulfur content = 0.5 % IDAPA 18.01.01.728

## 2.2 Boiler design capacity

10,000 lb steam/hr= 17 MM BTU/hr (1

(1.7E+03 BUT/hr)/(1 ib steam/hr)\*(10,000 ib steam/hr)/1e+08=17 MM BTU/hr

## 2.3 Emission factors (EFs)

|             | (lb/10*3gai) |
|-------------|--------------|
| PM          | 2            |
| PM10        | 2            |
| ÇO          | 5            |
| NOx         | 20           |
| <b>\$02</b> | 72           |
| VOC         | 0.2          |

AP-42, 1/95, T1.3-2

#### \*2.4 Combustion rate

| *Max. hourly.=   | 89 gai/hr     | Per application combustion rate, received 4/7/95 |
|------------------|---------------|--------------------------------------------------|
| Max. annually =  | 777504 gal/yr | Max. galfyr = Max. 89 (galfhr)*7day*24hr*52wk    |
| *Nor, annually = | 847920 ton/yr | Nor = Max./1.2                                   |

#### 2.5 Emissions

|       | lb/hr | t/y,max. | t/y,nor. | emission (lb/hr) = $EF(lb/1e+3 gal)^*(gai/hr)/1000(gai/1e+3 gal)$      |
|-------|-------|----------|----------|------------------------------------------------------------------------|
| PM    | 0.18  | 0.78     | 0.65     | emission (t/y) = EF(lb/1E+3)*(gai/yr)/2000(lb/ton)/1000 (gai/1e+3 gai) |
| PM-10 | 0.18  | 0.78     | 0.85     | Nor = Max./1.2                                                         |
| CO    | 0.45  | 1.94     | 1.82     |                                                                        |
| NOx   | 1.78  | 7.78     | 6.48     |                                                                        |
| SO2   | 6.41  | 27.99    | 23.33    |                                                                        |
| MOC   | 4.44  | 0.00     | A 04     |                                                                        |

Table 8-3

Date: 21-May-96

Ceda Pine Veneer, Inc.

ESTIMATING EMISSIONS (PM 10) FORM PROCESS AND MANUFACTURING OPERATIONS

#### 1. ASSUMPTIONS:

Moisture content of log: Moisture content of veneer: 50% 15%

Max. - 1.2"Nor.

2. CONVERSION FACTORS

titon of log = 1 BD tons log/(1-moleture content percetage of log)

: MSF (thousand board feet) = 4.8 tons of log

4.8 tons of log (Pinehurs: PM10 SIP, 2/5/92, B-45)

#### 3, PM10 EMISSIONS

#### 3.1 OUTDOOR ACTIVITIES

Production throughput =

12.8 MMBF of log/yr

coefficient #

Production throughput\*coeff. =

12.6 MMBF of log/yr

| **00 <b>068</b>         | Hourly Pro | duction |            | Operating | Production | Rate Max      | Emie≉i | lon    | Emissions | Annually         | Remark                   |                |
|-------------------------|------------|---------|------------|-----------|------------|---------------|--------|--------|-----------|------------------|--------------------------|----------------|
|                         | max*co.    |         | Max. Flate | hour      | hourly     | annually      | Factor | 8      | hourly    | annually         | note is same as that for | PM             |
|                         |            | unit    |            | hr        | ton/br     | ton/yr        |        | unit   | lp/hr     | tonlyr           | unless spoified here     |                |
| Pt Deck saw             | 15.75      | MBF     | 15,75      | 900       | 75.60      | 60489         | 0.2    | lb/ton | 15.12     | 6.05             | EPA AIRS (3/90) SCC 3    | 0700802        |
| c2 Ring debarker        | 3.15       | MBF     | 3,15       | 4800      | 15.12      | 60480         | 0.011  | lb/ton | 0.17      | 0.33             | EPA AIRS (3/90) SCC 3    | -07-006-01     |
| oS Chop saw #1          | 3,15       | MBF     | 3.15       | 4000      | 15.12      | 60480         | 0.2    | lb/ton | 3.92      | 6.05             | same as p1               |                |
| 54 Rosser head debarker | 1.20       | MBF     | 1,20       | 4000      | 5.76       | 23040         | 0.011  | lb/ton | 9.06      | 9,13             | same as p2               |                |
| of Chop saw #2          | 7.06       | BOT     | 7.05       | 4000      | 14.11      | 56438         | 0.2    | ib/ton | 2.82      | 5.84             | earne as p1              |                |
| p7 Chipper #1           | 7.22       | BOT*    | 7.22       | 4000      | 14.44      | 67 <b>758</b> | 0.1    | lb/ton | 1,44      | 2.89             | EF(PM)*(1-               | 50% )=EF(PM10) |
| od Chipper #2           | 0.14       | BDT     | 0.14       | 4000      | 0.29       | 1152          | 0,1    | ib/ton | 0.03      | â.0 <del>8</del> | garne as Chipper #1      |                |
| p9 Screen out           |            | BOT*    | 7.22       | 4000      | 14,44      | 57758         | 0.071  | lb/ton | 1.03      | 2.05             |                          |                |
| p 11 Faicon hog         |            | BOT     | 2.12       | 4000      | 4,23       | 16920         | 0.07   |        | 8.42      | 0.85             |                          |                |
| 517 Knile hog(Veneer)   | -          |         | Q. 14      | 8490      | 0.18       | 1369          | 0.1    |        | 0.02      | 0.07             | same as Chipper #1       |                |
|                         |            |         |            |           |            |               |        |        |           |                  |                          |                |

SUM 24.13 24.11

#### ... INDOOR ACTIVITIES

Sesume Indoor control efficiency = 90%

| ASSESSED ALICONAL CONSTITUTOR SECTION |               |         |      |           | \$\sqrt{74}          |        |          |         |                    |            |          |                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------|------|-----------|----------------------|--------|----------|---------|--------------------|------------|----------|---------------------------------|
| Process Hourly Production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | iction  |      | Operating | Production Rate Max. |        | Emission |         | Emissions Annually |            | Remark   |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | max"co. | Max. | Plate     | hour                 | hourly | annually | Factors | •                  | hourty     | annually |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | u       | nit  |           | br                   | ton/hr | ton/yr   |         | unit               | lb/hr      | ton/yr   |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | িই Sawmill    | 7.05 8  | TCI  | 7.06      | 4000                 | 14.11  | 56438    | 0.2     | b/ton              | 2.54       | 5.08     | EPA AIRS (3/90) SCC 3-07-008-02 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | p14 Sticer    |         |      |           |                      |        |          |         |                    | negligible |          |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ∷6 clip/grade |         |      |           | 8760                 | 2,60   |          | 0.2     | lb/ton             | 0.05       | 0.23     |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |         |      |           |                      |        |          |         |                    |            |          |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.056        |         |      |           |                      |        |          |         |                    | 2.50       | £ 54     |                                 |

#### 3.3 CYCLONES

ACFM: actually cubit feet per minute. Here assume act=sof.

| ACTM: actually cubit leet pr | er minute. | Mare Sear | !me 201=803. |           |            |            |         |                 |           |          |                                        |
|------------------------------|------------|-----------|--------------|-----------|------------|------------|---------|-----------------|-----------|----------|----------------------------------------|
| Process                      | Hourty Pr  | oduction  |              | Operating | Stack exit | Stack exit | Emisek  | O#s             | Emissions | Annually | Remark                                 |
|                              |            |           | Max. Flate   | hour      | Gas flow r | temp.      | Factors | •               | hourty    | annually |                                        |
|                              |            | unit      |              | hr        | acim       |            |         | unit            | lp/hr     | tonfyr   |                                        |
| p10 Fine Blower Cyclone      | 1.2        | BDT       | 1.2          | 4000      | 2300       | ambient    | 0.03    | gr/act          | 0,24      | 0.47     | errission(PM10)-(0.8/2.0)*emission(PM) |
| P18 Glowbe saw cyclone       | NA         | BOT       |              | 800       | 1000       | ambient    | 0.03    | gr <i>i</i> sct | 0.10      | 0.04     | EPA AIRS (3/90) SCC 3-07-008-08        |
| SUM                          |            |           |              |           |            |            |         |                 | 0.34      | 0.5\$    |                                        |

## 3.4 STEAM CHAMBERS AND THE STEAM DRYER

Convertion factors

1 MBF, thousand board feet = 1 MBF, thousand board feet #

1.75 tons of rought green lumber (Pinehurst PM10 SIP,2/5/92,B-45)

8/3 MSF, thousand 3/8" square feet

| Process              | Hourly Production max. *co. | Max. Rate | , .  | Production<br>hourly | Rate Max. | Emissi<br>Factors |        | Emissions<br>hourly | Annually<br>annually |                 |
|----------------------|-----------------------------|-----------|------|----------------------|-----------|-------------------|--------|---------------------|----------------------|-----------------|
|                      | unit                        |           | hr   | ton/hr               | ton/yr    |                   | unit   | lb/hr               | tonlyr               |                 |
| P12 Steam chamber #1 | 1.28 MBF                    | 1.26      | 8400 | 2.21                 | 18592     | 1,59              | 1b/M8F | 2.01                | 8,45                 | EF(PM10)#EF(PM) |
| P13 Steam chamber #2 | 1.28 MBF                    | 1.26      | 8400 | 2.21                 | 18592     | 1.59              | ib/MBF | 2.01                | 8,45                 | same as p12     |
| p15 Steam dryer      | 0.95 MSF                    | 0.95      | 8400 |                      |           | 0.8               | Ib/MSF | 9.76                | 3, 19                | EF(PM10)        |
|                      | 2,53 MBF                    | 2.53      | 8400 | 4,43                 | 37184     |                   |        |                     |                      |                 |
|                      |                             |           |      |                      |           |                   |        |                     |                      |                 |
| SUM                  |                             |           |      |                      |           |                   |        | 4,78                | 20.08                |                 |

PM emissions from process and manufacturing operation are:

 Table 8-4

Date: 21-May-95

Geda Pine Veneer, Inc.

ESTIMATING EMISSIONS (PM10) FROM SOLID MATERIAL TRANSPORT, HANDLING, AND STORAGE

1. ASSUMPTION

Moisture content of green wood = Moisture content of dry wood =

50% 15%

2. PM10 EMISSIONS

BDT: Bon dry ton, unit conversion: ton \* BD ton/(1-moisture content percentage of log)
2.1 STORAGE PILES

| Process                | Hourly pro  | ductin   |            |      | Production |          |        |        | Emissio | ns       | Remark                   |                   |
|------------------------|-------------|----------|------------|------|------------|----------|--------|--------|---------|----------|--------------------------|-------------------|
|                        | max"00,     |          | Max. Plate | youi | youth      | annually | Factor | 5      | PM      |          | same as PM estimation    |                   |
|                        |             | unit     |            | hr   | ton/hr     | ton/yr   | ₽M     | ⊌nit   | hourly  | annually | unless specified here    |                   |
|                        |             |          |            |      |            |          |        |        | 1b/hr   | ton/yr   | assume:EF(hog feel)=     | 20% EF of sawdust |
| *ST2 Sawdust pile      | 1.09        | SDT      | 1,09       | 400  | 2.16       | 872      | 0.36   | lb/ton | 0.78    | 0,16     | EPA AIRS(3/90) SCC 3-07  | 00803             |
| *ST3 Fuel house        | 2.56        | BOT      | 2.58       | 4000 | 5.12       | 20480    | 0.072  | ib/ton | 0.18    | 0.37     | conti eff.of half encies | 50%               |
| *ST4 Storage pile      | 7.50        | BOT      | 7.5        | 400  | 15,00      | 6000     | 0.072  | lb/ton | 1.08    | 0.22     |                          |                   |
| *STS Bin bunker no ba  | 0.29        | BOT      | 0.29       | 4000 | 0,34       | 1365     | 0.072  | lb/ton | 0.02    | 0.05     |                          |                   |
| *ST6 Ash bunker        | 0.29        | BOT      | 0.29       | 700  | 0.29       | 203      | 0,36   | ib/ton | 0.10    | 0.04     |                          |                   |
| * inconsistency of two | app. (7/17# | 95 & 4/7 | 7/95)      |      |            |          |        |        |         |          |                          |                   |
| SUM                    |             |          |            |      |            |          |        |        | 2.18    | 0.83     |                          |                   |

2.2 BINS

| £.2 Dillo           |            |         |           |           |            |           |         |        |         |          |                                |  |
|---------------------|------------|---------|-----------|-----------|------------|-----------|---------|--------|---------|----------|--------------------------------|--|
| Process             | Hourly Pro | duction |           | Operating | Production | Rate Max. | Emissi  | on     | Emissio | ns (PM)  |                                |  |
|                     |            |         | Max. Rate | hour      | hourly     | annually  | Factors | :      | hourly  | annually |                                |  |
|                     |            | unit    |           | hr        | ton/hr     | tonlys    |         | unit   | lip/hr  | ton/yr   |                                |  |
| ST1 Bin(chip surge) | 7.22       | BDT*    | 7.22      | 2000      | 14.44      | 28879     | 0,58    | lb/ton | 8.37    | 8.37     | EPA AIRS(3/90) SCC 3-07-030-01 |  |
|                     |            |         |           |           |            |           | 1.2     | lb/ton | 17,33   | 17.33    | EPA AIRS(3/90) SCC 3-07-030-02 |  |
| ST7 Chip bin        | 0.15       | ₿DT*    | 0,15      | 4000      | 9.18       | 706       | 0.58    | b/ton  | 0.10    | 0.20     |                                |  |
|                     |            |         |           |           |            |           | 1.2     | b/ton  | 0.21    | 0,42     |                                |  |
|                     |            |         |           |           |            |           |         |        |         |          |                                |  |
| Q1 HLA              |            |         |           |           |            |           |         |        | 98.09   | 28 22    |                                |  |

#### 2.3 TRANSFER/CONVEYOR

| Wind speed -           | 9    | mph | (per application 7/19/95) |
|------------------------|------|-----|---------------------------|
| Moisture content w     | 50%  |     | (per application 7/19/98) |
| k(PM) =                | 1    |     | (AP-42, 1/95, 13.2.4)     |
| K (<30 um) »           | 0.74 |     | (AP-42, 1/95, 13.2.4)     |
| K (<10 um) =           | 0.36 |     | (AP-42, 1/95, 13,2,4)     |
| Production throughet = |      |     | 12.6 MMBF of log/yr       |

coefficient =

| Production throughput  | *coeff. #         |      |      |           |            | 12.6      | MMBF   | at lagiys     |        |                |          |
|------------------------|-------------------|------|------|-----------|------------|-----------|--------|---------------|--------|----------------|----------|
| Process                | Hourly Production |      |      | Operating | Production | Rate Max. | Drop   | Emission (PM) |        | Emissions (PM) |          |
|                        | Max. Rate         |      |      | hour      | bourty     | annually  | points | Factors       |        | hourly         | annually |
|                        |                   | unit |      | br        | ton/hr     | ton/yr    |        |               | unit   | lb/hr          | ton/ye   |
| TR1 Infeed deck        | 3,15              | MBF  | 3.15 | 4000      | 15.12      | 60460     | NA     | 0.02          | lb/ton | 0,00           | 0.00     |
| TR2 chain conveyor     | 0.02              | BOT  | 0.02 | 4000      | 0.03       | 120       | 1      | 0.02          | lb/ton | 0.00           | 0.00     |
| TR3 2 vib.2 belt conve | 2.12              | TOB  | 2.12 | 4000      | 4.23       | 16920     | 6      | 0.02          | lb/ton | 0.43           | 0.85     |
| TR4 2 chain conveyor   | 2.12              | BOT  | 2.12 | 4800      | 4,23       | 16920     | 1      | 0.02          | lb/ton | 6.07           | 0.14     |
| TR7 velt conveyors     | 0.23              | 80T  | 0.23 | 4000      | 0.47       | 1862      | 1      | 0.02          | lb/ton | 0,01           | 0.02     |
| TR5 front and loader   | 1.88              | TOS  | 1,88 | 1600      | 3.75       | 6000      | 2      | 0.02          | lb/ton | 0.13           | 0.10     |
| TR8 front and loader   | 1,09              | BOT  | 1,09 | 400       | 2.18       | 871       | 5      | 0.02          | lb/ton | 0.07           | 0.01     |
| TR 8 front end bucket  | 1.18              | SDT  | 1,18 | 1000      | 2.36       | 2358      | 2      | 0.02          | lb/ton | 0.08           | 0.04     |
| TR 9 front end bucket  | 0.60              | BDT  | 0.60 | 1000      | 1.20       | 1200      | 2      | 0.02          | lb/ton | 0.04           | 0.02     |
| SLIM                   |                   |      |      |           |            |           |        |               |        | 0.82           | 1 10     |

without count pile emissions

TOTAL

26.84 27.51

## APPENDIX C

```
*** SCREEN3 MODEL RUN ***
*** VERSION DATED 95250 ***
```

Ceda Pine Veneer, Inc. Hog Fuel Boiler (NOx)

SIMPLE TERRAIN INPUTS:

SOURCE TYPE POINT EMISSION RATE (G/S) =
STACK HEIGHT (M) =
STK INSIDE DIAM (M) = 1.35000 12.1900 .6400 STK EXIT VELOCITY (M/S) = STK GAS EXIT TEMP (K) = 22.3945 436.0000 293.0000 AMBIENT AIR TEMP (K) = RECEPTOR HEIGHT (M) ----.0000 RURAL URBAN/RURAL OPTION -----BUILDING HEIGHT (M) = 13.1100 MIN HORIZ BLDG DIM (M) = 13.7200 18.2900 MAX HORIZ BLDG DIM (M) =

STACK EXIT VELOCITY WAS CALCULATED FROM VOLUME FLOW RATE = 15265.000 (ACFM)

BUOY. FLUX = 7.375 M\*\*4/S\*\*3; MOM. FLUX = 34.511 M\*\*4/S\*\*2.

\*\*\* FULL METEOROLOGY \*\*\*

\*\*\* \*\*\* \*\*\* AUTOMATED DISTANCES \*\*\*

\*\*\* TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES \*\*\*

| DIST<br>(M) | CONC (UG/M**3) | STAB | U10M<br>(M/S) | USTK<br>(M/S)  | MIX HT<br>(M)      | PLUME<br>HT (M) | SIGMA<br>Y (M) | SIGMA<br>Z (M) | DWASH |
|-------------|----------------|------|---------------|----------------|--------------------|-----------------|----------------|----------------|-------|
|             | ·              |      |               | ·- ·· ·· ·· ·· |                    |                 |                |                |       |
| 1.          | .0000          | 0    | .0            | .0             | .0                 | .00             | .00            | .00            | NA    |
| 100.        | 650.1          | 6    | 4.0           | 4.5            | 10000.0            | 15.84           | 4.07           | 9.76           | SS    |
| 200.        | 198.3          | 5    | 5.0           | 5.4            | 10000.0            | 18.67           | 11.63          | 13.65          | 53    |
| 300.        | 125.2          | 4    | 5.0           | 5.2            | 1600.0             | 17.86           | 22.61          | 17.44          | SS    |
| 400.        | 96.96          | 4    | 4.5           | 4.6            | 1440.0             | 19.68           | 29.45          | 20.01          | SS    |
| 500.        | 78.79          | 4    | 4.0           | 4.1            | 1280.0             | 22.21           | 36.15          | 22.43          | SS    |
| 600.        | 70.46          | 6    | 4.0           | 4.5            | 10000.0            | 26.46           | 21.24          | 15.78          | SS    |
| 700.        | 66.53          | 6    | 4.0           | 4.5            | 10000.0            | 26.46           | 24.46          | 16.59          | SS    |
| 800.        | 62.92          | 6    | 4.0           | 4.5            | 10000.0            | 26.46           | 27.63          | 17.38          | SS    |
| 900.        | 59.56          | 6    | 4.0           | 4.5            | 10000.0            | 26.46           | 30.78          | 18.14          | SS    |
| 1000.       | 56.42          | 6    | 4.0           | 4.5            | 10000.0            | 26.46           | 33.88          | 18.89          | SS    |
| 1100.       | 53.50          | 6    | 4.0           | 4.5            | 10000.0            | 26.46           | 36.96          | 19.62          | SS    |
| 1200.       | 50.78          | 6    | 4.0           | 4.5            | 10000.0            | 26.46           | 40.01          | 20.34          | SS    |
| 1300.       | 48.49          | 6    | 3.5           | 3.9            | 10000.0            | 28.26           | 43.04          | 20.62          | SS    |
| 1400.       | 46.57          | 6    | 3.5           | 3.9            | 10000.0            | 28.26           | 46.05          | 21.32          | SS    |
| 1500.       | 44.33          | 6    | 3.0           | 3.3            | 10000.0            | 30.57           | 49.03          | 21.50          | SS    |
| 1600.       | 42.05          | 6    | 3.5           | 3.9            | 10000.0            | 28.26           | 51.99          | 21.90          | SS    |
| 1700.       | 40.58          | 6    | 3.0           | 3.3            | 10000.0            | 30.57           | 54.94          | 22.07          | SS    |
| 1800.       | 39.40          | 6    | 3.0           | 3.3            | 10000.0            | 30.57           | 57.87          | 22.64          | SS    |
| 1900.       | 38.23          | 6    | 3.0           | 3.3            | 10000.0            | 30.57           | 60.78          | 23.20          | SS    |
| 2000.       | 37.10          | 6    | 3.0           | 3.3            | 10000.0            | 30.57           | 63.68          | 23.75          | SS    |
|             |                |      |               |                | · · · <del>-</del> |                 |                |                |       |

MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 1. M: 40. 1331. 6 4.0 4.5 10000.0 12.94 1.78 6.84 ss

DWASH= MEANS NO CALC MADE (CONC = 0.0)
DWASH=NO MEANS NO BUILDING DOWNWASH USED
DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED
DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED
DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3\*LB

\*\*\* SCREEN DISCRETE DISTANCES \*\*\*
\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

\*\*\* TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES \*\*\*

DIST CONC U10M USTK MIX HT PLUME SIGMA SIGMA

```
STAB (M/S) (M/S)
                                                 HT (M)
                                                         Y (M)
    (M)
          (UG/M**3)
                                          (M)
                                                                 Z (M) DWASH
                             4.0
                       6
                                    4.5 10000.0 17.21
    122. 515.6
                                                          4.89 10.84
                                                                           SS
  DWASH= MEANS NO CALC MADE (CONC = 0.0)
  DWASH=NO MEANS NO BUILDING DOWNWASH USED
  DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED
  DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED
  DWASH-NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB
  *** CAVITY CALCULATION - 1 ***
                                      *** CAVITY CALCULATION - 2 ***
   CONC (UG/M**3) = CRIT WS @10M (M/S) =
                          1351.
                                       CONC (UG/M**3) =
                                                               1212.
                          5.34
                                       CRIT WS @10M (M/S) =
                                                                7.94
                                                              8.26
   CRIT WS @ HS (M/S) =
                                       CRIT WS @ HS (M/S) =
   DILUTION WS (M/S) =
                                       DILUTION WS (M/S) = CAVITY HT (M) =
                           2.78
                                                                4.13
                     **
                                                              16.53
                                       CAVITY HT (M)
   CAVITY HT (M)
                          18.49
                                      CAVITY LENGTH (M) = 15.94
ALONGWIND DIM (M) = 18.29
   CAVITY LENGTH (M) = 24.86
  ALONGWIND DIM (M) = 13.72
      *** SUMMARY OF SCREEN MODEL RESULTS ***
      **********
 CALCULATION MAX CONU DIDINATION (UG/M**3) MAX (M)
                  MAX CONC DIST TO TERRAIN
                                      HT (M)
 SIMPLE TERRAIN 1331.
                                  40.
                                          0.
                                              (DIST = CAVITY LENGTH)
 BLDG. CAVITY-1
                   1351.
                                  25.
                                          --
                                          -- (DIST = CAVITY LENGTH)
 BLDG. CAVITY-2
                   1212.
                                  16.
 ** REMEMBER TO INCLUDE BACKGROUND CONCENTRATIONS **
 ************
Conversion Factor: 0.08 (convert hourly concentration to annually one);
Annually Background Concentration: 40 UG/M^3:
NAAQs Standard for NOx: 100 UG/M^3;
At facility's boundary, worst case: Annually concentration (UG/M^3) = 515.6(UG/M^3) * 0.08 + 40 (UG/M^3) = 81.2 UG/M^3
It is 81% of the standard.
The facility shall be able to run its Hog Fuel Boiler at the adjusted permit limit for NO..
```

# APPENDIX D

## ABBREVIATED AIRS DATA ENTRY SHEET

| ame of Facility: Ceda Pin Veneer.                                           | 100                         | 2/2                                     |
|-----------------------------------------------------------------------------|-----------------------------|-----------------------------------------|
| IRS/Permit #: 012 - 000 36                                                  |                             |                                         |
| ermit Issue Date:                                                           |                             |                                         |
|                                                                             |                             |                                         |
| Source/Emissions Unit Name (25 spcs) lease use name as indicated in permit) | <u>SCC #</u><br>(8 digit #) | Air Progra<br>(SIP/NESHAP/<br>NSPS/PSD) |
| P18 Globe San) Cyclone (030)                                                | 3 a7 ->808                  | Sφ                                      |
| (= # 1 Cuclone)                                                             | <del></del>                 | ./                                      |
| STI Bin Chio Surve                                                          | 3 o 7 on 8 44               | V                                       |
| STA Sandust Pile                                                            | 807 trages                  | ļ.~                                     |
| ST3 Fuel House (it's a holf revered                                         | 307 008 99                  | X.7                                     |
| 018.1 (028)                                                                 |                             | Ţ                                       |
| 5T4 Storage Pile (Ha Luel)                                                  | 30700849                    | .7                                      |
| STS Bin Killing in Sander                                                   | \1                          | \ <u>^</u>                              |
| ST6 Ash Bunber                                                              | ·_\$                        | \ '                                     |
| ST7 Chio Bin                                                                | .:                          | ·                                       |
| TRI Infeed Dack                                                             | \f                          | f <i>(</i>                              |
| TRO Chair Convener (Barker)                                                 | 30700894                    | v/                                      |
| TR3 Vibrating (July or ( Mise 19ml)                                         |                             | /τ                                      |
| TRA Chain Conveyor (Hon Fuel)                                               |                             | \( \( \)                                |
| TRS Front End Londer Has The                                                | i , ,                       | * 1                                     |
| TRG Front End Loader (Sasmust)                                              | 3,0000000                   |                                         |
| TRA Belt Conveyor (Tran Ends)                                               |                             | <i>!</i> †                              |
| TRA Front End Byract 1400 Faces                                             |                             | ۲ -                                     |
| TRA Front Find Billion (CANA)                                               | 2 4 2 2 5 5 6 6 7           | 1                                       |
| (= Chis Le 20(T) ( 577)                                                     |                             | -                                       |
| Plant Road Figure                                                           | 3078520                     | 1                                       |

## ABBREVIATED AIRS DATA ENTRY SHEET

| Name of Facility: Ceda Pine Veneer.                                            | lac.                        | P 1/2                                    |
|--------------------------------------------------------------------------------|-----------------------------|------------------------------------------|
| AIRS/Permit #: 017 - 00036                                                     | W                           |                                          |
| Permit Issue Date:                                                             |                             |                                          |
| *Source/Emissions Unit Name (25 spcs) (Please use name as indicated in permit) | <u>SCC #</u><br>(8 digit #) | Air Program<br>(SIP/NESHAP/<br>NSPS/PSD) |
| * BI Hon Fuel Beiler (010)                                                     | 102 50 905                  | SP                                       |
| 92 Stanbu Diesel Boiler                                                        | 10/5050/                    | 1                                        |
| PI Deck Komi (060)                                                             | <u>3 07 00802</u>           |                                          |
| P2 Rina Debarker (250)                                                         | <u>3 of 602 of </u>         | ¥.                                       |
| P3 Choo Saw =                                                                  | <u> </u>                    | £1                                       |
| P1 Passar Hand Debarter 1050                                                   | <u> </u>                    |                                          |
| D5 Chec Say =2                                                                 | 307642                      | <u> </u>                                 |
| OL Sowmill (Indept)                                                            | 30)                         | \ 1                                      |
| DD Chinner # 1                                                                 | 360 347 840                 | \ <i>\</i>                               |
| PA Chioper #2                                                                  | 200 202 20                  |                                          |
| so screen out                                                                  | 27 -1820                    |                                          |
| Plo Fines Blowne Curione 1090)                                                 | 2 o 7 99 ? o 2              | • •                                      |
| (= Chio Screen Cholone)                                                        |                             | .,                                       |
| Dil Falcon Hon                                                                 | 30 24                       | t ·                                      |
| Do Steam Chamber =                                                             | 9-1-27                      |                                          |
| PB Steam Change ==                                                             | v /                         |                                          |
| DIE Slicer (Trasser)                                                           | . 7                         | · ·                                      |
| Pls Stram Vancer Down (11)                                                     | 302-307-12                  |                                          |
| Più Choi Gerado Tesas                                                          |                             | ······································   |
|                                                                                |                             | ······································   |

August 5, 1996

MEMORANDUM

TO:

Brian R. Monson, Chief Operating Permits Bureau Permits and Enforcement

FROM:

Yihong H. Chen, Air Quality Engineer /C
Operating Permits Bureau
Bill Rogers, Air Quality Engineer Construction Permits Bureau

THROUGH:

Susan J. Richards, Air Quality Permits Managery Operating Permits Bureau

SUBJECT:

Technical Analysis for Tier II Operating Permit (#017-00036) Ceda-Pine Veneer, Inc., Samuels, Idaho (Part II - Confidential)

#### PROJECT DESCRIPTION

NOTE: Due to the facility's request, the following information is treated as confidential, unless a number of the public requests that DEQ make a legal determination on whether the information does, in fact, qualify for the confidential treatment.

#### Point sources:

Pl Deck Saw (3)

Equipment Specifications:

Manufacturing:

Model:

Design Capacity:

Lam MT-1

Not Available

(4) P2 Ring Debarker

Equipment Specifications:

Manufacturing:

Model:

Design Capacity:

Nicholson

A2-27

Not Available

(5) P3 Chop Saw

Equipment Specifications:

Manufacturing:

Design Capacity:

Shop Built Not Available

P4 Rosser Head Debarker (6)

Equipment Specifications:

Manufacturing:

Model:

Morbark

C-24

Design Capacity:

Not Available

P5 Chop Saw (7)

Equipment Specifications:

Manufacturing:

Design Capacity:

Shop Built

Not Available

(8) P7 Chipper #1

Equipment Specifications:

Manufacturing:

Model:

Design Capacity:

Cmne

48\*

Not Available

> (9) P8 Chipper #2

> > Equipment Specifications:

Manufacturing: Model:

Design Capacity: (10) P9 Screen Out

Cmne 36"

Not Available

Equipment Specifications:

Manufacturing:

Model:

Design Capacity:

Morbark

Black Clawson Not Available

(11) PlO Fines Blower Cyclone

Equipment Specifications:

Manufacturing:

Model:

HJ Burns

#30

(12) Pll Falcon Hog

Equipment Specifications:

Manufacturing: Model: Design Capacity: Falcon Hog 24 x 36

Not Available

(13) P12 & P13 Steam Chamber #1 & #2

Equipment Specifications:

Manufacturing: Design Capacity: Shop Built

Not Available

Stack Design Specifications:

Height:

Exit Diameter: Exit Gas Flow Rate: Exit Temperature:

6.0 feet 0.16 feet Ambient 160°F

(14) P15 Steam Dryer

Equipment Specifications:

Manufacturing: Design Capacity: Design Capacity: James Dryer

#2

Not Available

Stack Design Specifications:

Height:

Exit Diameter: Exit Gas Flow Rate: Exit Temperature:

24 & 27 feet 30 & 24 feet 7085 & 16495

Ambient

(15) P17 Knife Hog

Equipment Specifications:

Manufacturing: Model: Design Capacity:

Peninsula Hog 30" Not Available

(16) P18 Globe Saw Cyclone

Equipment Specifications:

Manufacturing: Model: Design Capacity: Parott Mech H25 Blower Not Available Response to Comments and Questions Submitted During a Public Comment Period on Ceda-Pine Veneer, Incorporated's Proposed Tier II Operating Permit (OP) #017-00036 for the Entire Facility

#### COMMENTS AND RESPONSES

Comment #1: Throughput Quantities

Our requested throughput quantities were not used in developing the permit. We request our original numbers be used to develop emission limits.

DEO Response:

Based on DEQ's new policy (April 4, 1996), major source determinations for Title V may be based on PM-10 for particulate matter. This change makes it possible to use the facility's requested throughput while still being able to keep the facility at synthetic minor status. Therefore, DEQ has revised the final OP to reflect this comment.

**Comment #2:** PAGE 4: 3.3.1 Hog Fuel Boiler Fuel Consumption

CPV requested 1.59 green tons/hr and 11,104 green tons/year (not 3.0 and 25,200, respectively).

DEO Response: To give the facility the maximum operational flexibility and still meet the emission limits of PTC #0240-0036, the fuel consumption rate of 19,600 green tons/yr is given in the revised permit and technical memorandum.

Comment #3: 3.3.2 Standby Diesel Boiler

CPV requested 89 gallons/hr and 59,800 gallons/year (not 89 and 29,904, respectively).

Note: This is confusing because the boiler is used approximately 2 weeks per year. Please consider operating hours of 24/7/4 instead of 24/7/2. The gallons/year will then equal 59,800.

DEO Response:

To give the facility the maximum operational flexibility and still meet the requirements of the Rules for the Control of Air Pollution in Idaho (Rules), a fuel consumption rate of 777,504 gallons per year is given in the revised permit and technical memorandum, even though 59,800 gallons per year is requested.

Comment #4: 4.1 Operating Hours

DAILY recordkeeping will be an additional paperwork burden. We request the frequency be changed to monthly records.

<u>DEO Response:</u> This requirement has been deleted in the revised final OP.

Comment #5 4.2 Fuel Consumption

Recording fuel consumption on an hourly basis is unrealistic. Rounding errors will occur (tons burned/hr), and cause discrepancies. We request fuel consumption records be recorded on a monthly basis. Hourly averages can be calculated using "operating" information collected for 4.1 above.

DEO Response: DEO revised the final OP to reflect this comment. The monthly average fuel consumption rate (lb green ton/hr) records will be required rather than daily records.

Comment #6: 4.4 Exceedences

We request thirty (30) days for written notification - instead of 15 days.

<u>DEO Response:</u> The timeframe in the permit is that required by IDAPA 16.01.01.135. (<u>Rules</u>), Excess Emissions Reports. Therefore, it cannot be changed.

Comment #7: PAGE 6 AND 7; Confidentiality

Ceda-Pine Veneer still considers external equipment manufacturer names and models as confidential.

<u>DEO Response:</u> DEQ revised the final OP and technical memorandum to reflect this comment.

Comment #8: PAGE 8; 3.1 Maximum Facility Throughout

2.20 thousand board feet is unacceptable and unclear where this log/hour limit was calculated from. This production type limit should not be used as a limit in the permit. The permit limits should be based on emission limits only. (There is a possibility that partially completed products may be sent to a different facility for final processing!).

DEO Response: DEQ revised the final OP to reflect this comment. The hourly limit 2.20 thousand board feet of log is deleted from final OP.

Comments #9: 3.2 Maximum Throughput to Steam Dryer

Requested 6,640 million square feet (MSF) 3/8" per year, and .94857 MSF 3/8" per hour, (not 0.66 thousand SF 3/8" per hour).

DEO Response:

DEO revised the final OP to reflect this comment. 6,640 MSF per year at its equivalent 3/8" thickness is required in the final permit. The hourly throughput requirement has been deleted from the final OP.

Comments #10: PAGE 9

3.3.1 Use of "environmentally save chemicals" - is probably meant to read "environmentally safe chemicals."

<u>DEO Response:</u> The "environmentally save chemicals" has been changed to "Environmentally safe chemicals" in the final OP.

Comments #11: 4.1 Facility Log Throughput

Once again, daily recordkeeping is burdensome. We request monthly logs.

DEO Response: DEQ revised the final OP to reflect this comment. The Permittee will be required to record the monthly and annual throughput of log by the final OP.

Comments #12: 4.2 Veneer Throughput

Same request as 4.1 above.

<u>DEO Response:</u>
DEO revised the final OP to reflect this comment. The Permittee will be required to record the monthly and annual throughput of veneer by the final OP.

Comments #13 PAGE 10; 4.3 Fugitive Control Monitoring

Request that this be omitted. Fugitive dust control is basically water - and is unnecessary to record on a daily basis.

<u>DEO Response:</u> DEO revised the final OP to reflect this comment. This requirement is deleted from the final OP.

Comments #14: Again, we ask for thirty (30) days written notification.

DEO Response: The timeframe in the permit is that required by IDAPA 16.01.01.135. (Rules), Excess Emissions Reports. Therefore, cannot be changed.

Comments #15: We request justification for numbers provided. They do not correspond to our calculations or the numbers we provided.

<u>DEO Response:</u>
DEQ revised the final OP to reflect this comment. Please refer to the Technical Memorandum, Appendix B, and to DEQ response to Comment #1.

Comments #16: Paragraph 3.3 Page 4, the method for monitoring the fuel feed rate to the hog fuel boiler needs to be clarified. Most wood fired boilers do not have any direct method, such as a weight belt, to measure fuel feed. If estimating the fuel consumption is acceptable the permit should state it.

<u>DEO Response:</u>
DEQ revised the final OP to reflect this comment. Records of estimated monthly and annual fuel consumption are required in the final OP.

Paragraph 3.1 and 3.2 Page 8, when the unit is less than one million it should be written out. Instead of 2.20 thousand board feet of log per hour, 2200 board feet of log per hour. Also, is this log scale or lumber scale? Recording log scale input and veneer production on an hourly basis is a lot of recording, maybe shift basis is adequate.

DEO Response: DEG revised the final OP to reflect this comment. The scale used here is a log scale. Monthly and annual monitoring and recordkeeping of throughput and operating hours is requested.

Comments #18: Paragraph 4.1 and 4.2 Page 9, same comments as above, hourly monitoring of production seems to be overkill.

<u>DEO Response:</u> Please refer to Comments #4 and #5 and the corresponding DEQ response.

Comments #19:

I think that the permit should require an annual source test on the wood fired boiler emissions to demonstrate compliance with the PM and PM10 limits. This test should limit boiler production in the same manor as in PTC's, not become the maximum operating rate as required in Paragraph I, Page 13.

DEO Response:

Within the life time of the OP, one source test is required at the maximum capacity of the emissions unit for the following reasons: 1) the facility failed its first start-up source test; 2) barely passed the second source test by adding a fly ash separator screen; 3) it has been six years since the last test, the emissions may change due to wear and tear of equipment; and 4) the heating value of the fuel used in boiler was relatively low based on recent fuel analysis (February 1995).